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ABSTRACT 
The First Order Reliability Method (FORM) is a semi-probabilistic reliability analysis method devised to evaluate the 
reliability of a system. The stability of the system must be a function of two or more probabilistic variables that have a 
mean, and standard deviation. The correlation between the probabilistic variables must be determined, which can be 
difficult, as will be show, independent variables can be functions of independent variables. The FORM considers any 
deterministic variables also included in the stability function as having a mean equal to their value, and a standard deviation 
of zero.  
 
The equations for quantifying the stability of a planar-type failure mechanism in a hard-rock slope are available in close-
form and can be easily implemented in a spreadsheet, and checked against a commercially available limit equilibrium 
method software program. The author uses a worked example to show the application of FORM to a hard-rock slope 
susceptible to the planar-type failure mechanism. The author provides commentary on the application of the FORM in 
engineering practice given that the user will find it difficult to define or measure the correlation factor(s) and reduction 
factors.  
 
RÉSUMÉ 
Le premier fiabilité méthode (formulaire de commande) est une méthode d’analyse de fiabilité probabiliste semi conçue 
pour évaluer la fiabilité d’un système. La stabilité du système doit être une fonction de deux ou plusieurs variables 
probabilistes qui ont une moyenne et écart-type. La corrélation entre les variables probabilistes doit être déterminée, qui 
peut être difficile, comme se montrera, variables indépendantes peuvent être une fonction des variables indépendantes. 
La forme considère toutes les variables déterministes compris également la fonction de stabilité comme ayant une 
moyenne égale à leur valeur et un écart-type de zéro. 
 
Les équations pour quantifier la stabilité d’un mécanisme d’échec plane-type dans une pente de roche dure sont 
disponibles sous forme de clôture peuvent être facilement mis en œuvre dans une feuille de calcul et vérifiées contre un 
logiciel de méthode équilibre limite disponible dans le commerce programme. L’auteur utilise un exemple pour montrer 
l’application de formulaire à une pente de roche dure susceptibles d’être le mécanisme de rupture plane-type. L’auteur 
fournit le commentaire relatif à l’application de la forme à la pratique de l’ingénieur étant donné que l’utilisateur sera difficile 
de définir ou de mesurer les facteurs de corrélation et les facteurs de réduction. 
 
 
Original 
 
 
1 INTRODUCTION 
 
The assessment of risk in geotechnical engineering can be 
daunting if not near impossible owing to the inherent 
heterogeneous and anisotropic nature of geomaterials. It 
can also be cost prohibitive at times to collect sufficient 
data to make a reliable assessment of the mechanical, 
spatial, and temporal variation of materials at a given site. 
However, recent events have occurred that have shined a 
light on the fact that geotechnical engineers should be 
doing more to quantify risk (Guthrie 2017).  

Despite the difficulty in assessing risk, methods have 
been developed that can be applied to common 
geotechnical engineering problems to assess the 
probability of failure, which is typically the missing quantity 
when assessing risk, where is risk is defined as the product 
of the consequence of failure and the probability of failure 

occurring (Fenton and Griffiths 2008, Low 2008) as long as 
there is a closed form solution for the problem.  

This paper presents the implementation of the first 
order reliability method (FORM) in a spreadsheet to assess 
the probability of failure of a planar-type rock slope failure 
in a rock mass. This method relies on the collection of data 
that can be fitted to a statistical distribution such that a 
mean and standard deviation can be determined for a 
given independent random variable. The inclusion of 
deterministic variables is allowed, so long as there are two 
or more independent random variables for the calculation 
of a correlation coefficient.  

The use of a spreadsheet is ideal for FORM when a 
closed form solution is available for a given stability 
problem. For a planar-type failure on a hard rock mass, the 
commonly used Microsoft® Excel software has all the 
necessary built in functions required to complete the 



 

analyses, with the exception of the truncated exponential 
distribution (Olive 2008).   

 
2 PARAMETERS 
 
2.1 Definition 
 
The parameters typically collected during a geological 
mapping program or borehole drilling program (ideally 
orientated core when assessing the stability of a rock 
slope) are used in this FORM analysis. The measured 
values from the field (i.e. those variables that define the 
structural domain of the rock mass) become known as 
independent random variables in the analysis. The problem 
is illustrated in Figure 1 where the measured independent 
random variables for the failure block height from toe to 
crest, 𝐻, the dip of the failure block face, 𝜓, the dip of the 
failure plane, 𝜓, the distance from the crest of the block to 
the tension crack, 𝑏, with the calculated independent 
random variables for the depth of the tension crack, 𝑧் , 
the horizontal water pressure acting on the tension crack, 
𝑈, and the normal water pressure acting on the failure 
plane, 𝑉. The length of the failure plane, 𝐿, over which 
𝑉 acts is not indicated for clarity.  

It should be noted that 𝑧்  was chosen as vertical to 
simplify the problem used in this study. In real world 
applications the location of 𝑧்  would be defined by the 
spacing of the back release joint set, if present. The angle 
of 𝑧்  would be set by the dip of the back release joint set, 
again, if present. A further simplification was made by 
assuming the crest of the block was horizontal, whereas in 
real world applications this would often not be the case 
unless intermediate benches were present in a rock cut 
slope for instance.  

The measured independent random variables are listed 
in Table 1, with the corresponding distribution used in this 
study to define the mean (𝜇), standard deviation (𝜎), and 
variance (𝜎ଶ) of the variables. The mean is the first 
arithmetic moment of the normal distribution. The truncated 
exponential distribution requires the parameter 𝜆, which is 
equal to the inverse of the mean. It should be noted that 
some researchers have defined 𝜆 as the mean of the 
exponential distribution (Olive 2008). 

The mean is also defined as the expectant value, 𝐸[𝑋] 
and the variance, 𝑉𝑎𝑟[𝑋]. Two additional terms from the 
distributions are needed for this analysis, which are the 
second and third arithmetic moments, 𝐸[𝑋ଶ] and 𝐸[𝑋ଷ], 
respectively, where 𝑋 is an independent random variable 
or function of one or more independent random variables. 
 

 
Figure 1. Illustration of a block susceptible to planar-type 
failure with measured and calculated independent random 
variables indicated. 

 
Table 1. Measured Independent Variables and their Fitted 
Assumed Distributions 
 

Parameter Distribution1 

ψp (°) Log-Normal 

ψf (°) Log-Normal 

Hf (m) Truncated Exponential2 

b (m) Log-Normal 

γr (MN/m3) Log-Normal 

zw (m) Truncated Exponential 

  
1mean and standard deviations reported below in Table 2 
2the proof for the truncated exponential distribution is provided by 
(Olive 2008) 
 

Two functions are said to be dependent if they both 
involve the same independent random variable (Fenton 
and Griffiths 2008).  
 
2.2 Independence 
 
Independence can be defined as a variables ability to occur 
independent of the occurrence of another variable (Fenton 
and Griffiths 2008). For instance, the joint set forming the 
face of the slope is independent of the joint set forming the 
planar sliding surface. Another example would the 
independence of water collecting in a tension crack from 
the angle defining dip of the crest at the top of the slope.  

Independence is not an indication of correlation or lack 
thereof, which is discussed below (Fenton and Griffiths 
2008). Dependency of one variable on another clearly 
invokes correlation between the two. For instance, if 𝑊 and 
𝑍 are both functions of 𝑋, then 𝑊 and 𝑍 are clearly 
dependent variables and will be correlated. 
 
2.3 Correlation 
 



 

Correlation can be defined as the affect one random 
variable on another, or the direct measure of the degree of 
linear dependence between two variables (Fenton and 
Griffiths 2008). Linear correlation is best defined by the 
parameterized correlation coefficient, given by Equation 1 
(Triola 1999, Fenton and Griffiths 2008). 

 

𝜌 =
௩[,]

ඥ[]ඥ[]
      [1] 

 
Where 𝐶𝑜𝑣[𝑋, 𝑌] is defined as the covariance of two 

variables and is defined by Equation 2, and the square root 
of variances of 𝑋 and 𝑌 or simply their standard deviations. 

 
𝐶𝑜𝑣[𝑋, 𝑌] = 𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌] = 𝐸[𝑋𝑌] − 𝜇𝜇   [2]
 
Where 𝐸[𝑋] is the expectant value of 𝑋 which is its 

mean. The 𝐸[𝑋𝑌] is the product of the two expectant 
values. When the 𝑓(𝑋) is multiplied by the 𝑓(𝑋, 𝑊, 𝑍), 
then 𝐸[𝑋𝑌] would be 𝐸[𝑋ଶ𝑊𝑍] requiring the second 
arithmetic moment of 𝑋. For instance, the height of a block 
susceptible to planar sliding, 𝐻, will have a covariance with 
the total length of a sliding surface due to the definition of 
A, as shown in Equation 2. 

 
𝐶𝑜𝑣ൣ𝐻 , 𝐿൧ = 𝐸ൣ𝐻𝐿൧ − 𝐸ൣ𝐻൧𝐸[𝐿] = 𝐸ൣ𝐻𝐿൧ − 𝜇ுಽ

𝜇 
         = 𝐸ൣ𝐻  × ൫𝐻 − 𝑧்൯ × 𝑐𝑠𝑐൫𝜓൯൧ − 𝜇ுಽ

𝜇 
         = 𝐸ൣ𝐻

ଶ𝑐𝑠𝑐൫𝜓൯ − 𝐻𝑧௧𝑐𝑠𝑐൫𝜓൯൧ − 𝜇ுಽ
𝜇

       [3]
 
Equation 3 shows how multiplying through the function 

for 𝐿 results in the product of 𝐻
ଶ, which is the second 

arithmetic moment for 𝐻, when inside the square brackets 
of the expectant value.  

If 𝑓(𝑌) was expressed as 𝑓(𝑋ଶ, 𝑊, 𝑍), then the third 
arithmetic moment of 𝑋 would be required and Equation 1 
would no longer be valid, as the correlation would not be 
linear (Triola 1999). An example of a higher order function 
is the covariance of the height of water in a tension 
crack, 𝑧௪, and the vertical water pressure, 𝑉, shown in 
Equation 4.  

 
𝐶𝑜𝑣[𝑧௪ , 𝑉] = 𝐸[𝑧௪𝑉] − 𝐸[𝑧௪]𝐸[𝑉] = 𝐸[𝑧௪𝑉] − 𝜇௭ೢ

𝜇 
         = 𝐸[𝑧௪  × (0.5 × 𝛾௪ × 𝑧௪

ଶ )] − 𝜇௭ೢ
𝜇 

                  = 𝐸[𝑧௪
ଷ × 0.5 × 𝛾௪] − 𝜇௭ೢ

𝜇    [4] 
 
A proof for the linear correlation coefficient implies that 

its value is defined over the range −1 ≤ 𝜌 ≤ 1 (Fenton and 
Griffiths 2008). In order to have all correlation within the 
same range, a non-parametrized correlation is required for 
correlation, which would be the Spearman ranking 
correlation (Triola 1999). The author used the Spearman 
ranking correlation for all non-linear correlations, which can 
be identified by equations with variables raised to some 
power, or some other higher order function. The Spearman 
correlation is given by Equation 5. 

 

𝜌௦ = 1 −
 ∑ ௗమ

(మିଵ)
       [5] 

 

Where𝜌௦ is the Spearman correlation, ∑ 𝑑ଶ is the sum 
of the squared ranking numbers for each of the data points, 
and 𝑛 is the number of variables being considered. The 
number of data points for each variable must be the same.  

The correlation matrix for the FORM (discussed in 
further detail below) is then the matrix of the correlation 
coefficients for each of the independent random variables. 
This is easily defined by setting the sequence and rows of 
the matrix in the same order of variables and inputting the 
corresponding coefficients, with the diagonal of the matrix 
being a series of ones since the correlation coefficient of 
for a single variable would be the variance of that variable 
divided by the square of its standard deviation ൫𝜎𝑋

ଶ =
𝑉𝑎𝑟[𝑋]൯. 
 
2.4 Random Variable vs. Deterministic Variables 
 
Random variables, by definition, given enough data, can 
be fitted to distribution and have a defined mean and 
standard deviation. Deterministic values are constant, 
meaning their value is their mean and they do not vary. 
Their inclusion in probabilistic analysis using FORM results 
in no correlation and they can be discounted when creating 
the correlation matrix (see below).  

Examples of deterministic variables the unit weight of 
water, the gravitational constant, and any measured value 
that does not have a defined standard deviation (i.e. the 
tensile strength of rock bolts – not provided by the 
manufacturers).  

The analysis can be simplified when some of the 
measured independent random variables are defined as 
constants. Examples in engineering literature using FORM 
to assess the probability of failure of a rock slope have 
done this (i.e. Low 2008). The authors did this to simplify 
the analysis so as to focus in on the area of research. This 
paper is meant to provide a meaningful and instructive 
method to assess the probability of failure. The next section 
will discuss the values of the independent random 
variables used in this study, as well as where the author 
used deterministic values to provide an example where an 
engineer would normally assume imminent failure, but the 
probabilistic assessment provides clarity as to the actual 
likelihood of failure.  

 
2.5 Values 
 
Table 2 provides a summary of the values of the 
independent variables used in this study. Based on 
previous experience of the author, the geological mapping 
data was taken as being log-normally distributed. A random 
number generator in the spreadsheet was used to generate 
the random variables. 
 
Table 2. Summary of the Values of the Independent 
Random Variables used in this study. 
 

Parameter Mean1 Standard Deviation1 

ψp (°) 30.2 8.3 

ψf (°) 70 1.2 

Hf (m) 78.3 78.3 

b (m) 38.2 15.8 



 

γr (MN/m3) 0.0259 0.00121 

zw (m) 14.4 14.4 
1normal mean and standard deviations are reported here based on 
distributions reported in Table 1 
 

As described above, some deterministic variables were 
used to set the stability of the planar-type failure to 1.0. The 
deterministic variables are listed in Table 3. The author 
would like to point out that the variables listed in Table 3 
were chosen to be deterministic owing to the complexity of 
determining the covariance between them and other 
variables. Despite the fact that the variables in Table 3 are 
measured values, the covariance they would have with the 
Barton and Bandis shear strength function is evident, but 
due to the inclusion of the logarithmic and trigonometric 
functions, the difficulty of calculating the covariance would 
be daunting.  

 
Table 2. Summary of the Values of the Independent 
Deterministic Variables used in this study. 
 

Parameter Mean Standard Deviation1 

φr 10 0 

JRC 7 0 

JCS 19.5 0 
1standard deviation of a deterministic variable is always zero  

 
The first order approximation method was used to 

determine the mean and standard deviation of the 
calculated dependent variables, as listed in Table 3 
(Fenton and Griffiths 2008). Where trigonometric functions 
are applied to angles in functions for the calculated 
dependent variables, the first order approximation method 
was used to calculate the mean and variance of the angles 
when used with a trigonometric function. This simplified the 
calculation of the covariances between the various 
variables. The rationale for doing this, was that the data 
points for the measured independent random variables are 
discrete and not continuous (i.e. they are measured 
individually and typically define a single feature, such as 
the dip of joint, versus the dip of an adjacent but slightly 
steeper joint). Furthermore, the calculation of a dependent 
variable is independent of whether an angle is measure in 
degrees, which requires a trigonometric function, or 
whether the angle is measured in gradients. All the author 
did was convert the measured angles from degrees to 
gradients. 

 
Table 3. Summary of the Values of the Dependent 
Variables used in this study. 
 

Parameter Mean Standard Deviation1 

Depth of tension crack, 𝑧்  (m) 39.5 44.1 

Area of the failure plane, 𝐴 
(m2/m) 

77.3 118 

Weight of the sliding block, 𝑊 
(MN/m) 

72.9 111 

Horizontal water pressure, 𝑈 
(kPa/m) 

5.47 9.96 

Normal water pressure, 𝑉 
(kPa/m) 

1.02 1.02 

Normal stress, 𝜎 (MPa/m) 0.733 2.21 

Shear strength, 𝜏 (MPa/m) 0.266 0.801 

Partial differential of shear 
strength to normal stress, 
𝜕𝜏 𝜕𝜎⁄  (ratio) 

0.303 0.912 

Instantaneous friction angle, 𝜑 
(grad) 

0.303 0.912 

Instantaneous cohesion, 𝑐 
(MPa) 

0.263 0.790 

1standard deviation of a deterministic variable is always zero  
 
The author also would like to point out that using the 

first order estimation method (Fenton and Griffiths 2008) 
may not provide the most accurate estimates of variance. 
Further work is required to assess the accuracy of first 
order method by comparing it other methods.  
 
3 FORM 
 
3.1 Equation 
 
The FORM is a method that determines the shortest path 
to the failure surface or limit state surface, as shown in 
Figure 2, from the mean point of stability (Low 2008). That 
is, the factor of safety is defined using the mean of the 
variables and then the standard deviations are used to 
determine how far said point is from the limit state surface. 
That distance is then assessed to determine the likelihood 
of the data defining the mean actually being at or past the 
failure surface. The closet point on the limit state surface to 
the mean point is known as the design point, as shown in 
Figure 2 (Low 2008), which denotes the position of unity 
with respect to the working limit state (i.e. factor of safety 
equal to one).  

FORM was developed by Hasofer and Lind based on 
their work studying the first-order second-moment method 
(FOSM) (Fenton and Griffiths 2008). The solution to FOSM 
follows the gradient at the mean point to the failure surface 
which is not a unique solution in that may not actually be 
the shortest distance between the mean point and failure 
surface. FORM is a better representation of the probability 
of occurrence, however it does assume a linear failure 
surface. In the case of a non-linear failure surface, multiple 
local minima may occur which could result in an under 
estimation of the probability of occurrence (Fenton and 
Griffiths 2008). Given the use of the Barton and Bandis 
shear strength criteria in this study, and the continued use 
of a linear approximation of the Mohr-Coulomb strength 
criteria that Barton and Bandis is based on, the author 
considers FORM to be a suitable method for at least 
preliminary design, if not detailed design.  

FORM is defined by Equation 6. 
 

𝛽 = 
ெୀ

ටቀ
𝒙ିா[𝑿]

𝝈𝑿
ቁ

்

𝑪ିଵ ቀ
𝒙ିா[𝑿]

𝝈𝑿
ቁ     [6] 

 
Where  𝛽 is the reliability index (discussed further in 

Section 2.7), 𝑀 is the limit state surface, 𝒙 is the vector of 
number of standard deviations from the mean for each 



 

independent random variable, and 𝐸[𝑿] is the vector of 
means for the variables, 𝑪 is the inverse of the correlation 
matrix. The superscript 𝑇 indicates the transform of the 
matrix of reduced variables (discussed below). The author 
uses 𝑪 to indicate the correlation matrix, for clarity, 
however, other authors have used 𝑪 for the covariance 
matrix, and 𝑹 for the correlation matrix (e.g. Low 2008).  

 
2.6 Limit State Surface  
 
The limit state surface, or failure surface, can be defined as 
the unfactored difference between the resistance and load 
of a system, as shown in Figure 2. The definition used here 
is given my Equation 7. 
 

𝑀 = 𝑅 − 𝐿     [7] 
   

Where 𝑅 is the resistance and 𝐿 is the load. The 
definition of the limit state surface can have many forms. 
The most convenient form for the FORM is the one defined 
by Equation 7 as designers are interested in how far the 
mean of the safety margin (i.e. when 𝑅 < 𝐿, or 𝑀 < 0) is 
from the failure point (Fenton and Griffiths 2008), or the 
design point as shown in Figure 2. 

 

 
Figure 2. Illustration of FORM in relation to the limit state 
surface and reliability index (after Low 2008) 
 

The definition of 𝑀 per Equation 6 allows the reliability 
index, which is discussed below, to be minimized by setting 
searching for the value of the vector of reduced variables 
such that Equation 6 is at it minimum value, and Equation 
7 is zero.  

The limit state function and its relationship to the 
reliability index, which is discussed below, is illustrated in 
Figure 2. 

In Figure 2, the mean value point represents the state 
calculated when only the mean values of the independent 
random variables, dependent variables, and deterministic 
variables are considered. The design point represents the 
intersection of the limit state surface and the minimized 
reliability index when the matrix of reduced variables is set 
to some value. 

For the mean values used by the author, when the limit 
state function is set to zero, and the reliability index is 

minimized, the probabilistic analysis using FORM results in 
a probability of failure of 50%. Considering Figure 2, this 
would mean that the design point and the mean point would 
be co-located on the limit state surface, 𝑀 and 50% of the 
ellipse representing the reliability index would be above 𝑀 
and the other 50% would be located below 𝑀. Considering 
the physical meaning, this would mean that one increment 
of standard deviation in one direction would have the same 
but opposite effect as one increment of standard deviation 
in the opposite direction. With 50% of the ellipse 
representing 𝛽 on either side of 𝑀, the probability of failure 
would be 50%.  
 
2.7 Reliability Index 
 
The reliability index is used to measure the distance to the 
limit state surface. The probability of the distance to M 
being less than zero is defined by Equation 8. 

 
𝑝 = 1 − 𝛷(𝛽)     [8] 
 
Where 𝑝 is the probability of failure and 𝛷 is the normal 

standard distribution. Given that the author deployed 
FORM is a spreadsheet program, the normal standard 
distribution is provided as a built in function and hence, 𝑝 
is easily calculated. 
 
3.2 Matrix of Reduced Variables 
 
FORM in essence measures the number of standard 
deviations a point is from the failure surface. The vector of 
reduced variables, 𝑿𝒓 in Equation 5 is defined by Equation 
9 and is illustrated in Figure 2. 

 

𝑿𝒓 =
𝒙ିா[𝑿]

𝝈𝑿
     [9] 

 
The solution to the FORM equation presented as 

Equation 5 is the minimum value of 𝛽. In this case, the 
minimum value of 𝛽 is found by finding a combination of 
reduced variables such that 𝛽 is minimized. The minimum 
value of 𝛽 can be found by using the add-in Solver function 
in Excel (Foreman 2014). One only needs to set 𝛽 to be 
minimized with a constraint of 𝑀 = 0. 

 
3.3 Correlation  
 
Correlation provides a method to determine how changing 
the value of one variable by a number of standard 
deviations affects another variable it is correlated with. In 
commercially available software, like RocPlane 
(Rocscience 2017) and Slope/W (GEO-SLOPE 2012), 
correlation is ignored when carrying out a sensitivity 
analysis.  

Figure 3 provides the sensitivity analysis for the limit 
equilibrium analysis carried out in RocPlane using the 
mean values presented in Tables 1, 2, and 3. The minimum 
variable, the one represented by the line below all others 
(𝐻 in the case of Figure 3 for negative percent change 
from the mean and 𝑐 for positive percent change from the 
mean). The minimum variable controls the stability of the 
system, governing the outcome of the assessment. 



 

 

 
Figure 3. Graph of sensitivity analysis carried out in 

RocPlane (Rocscience 2017) 
 
The correlation matrix, 𝑪, in Equation 5 is given by 

Equation 10. 
 

𝑪 =

𝜌 = 1 … 𝜌

⋮ ⋱ ⋮
𝜌 … 𝜌 = 1

    [10] 

 
The matrix for C in Equation 10 will be as wide and tall 

as there are independent random variables and dependent 
variables, n, where i is the variable in the first column and 
first row, and j is the variable in the last column and last 
row. Since the coefficient of correlation for a single variable 
is one, then the coefficients along the diagonal of the matrix 
will be equal to one.  

The problem with only sampling one variable at a time 
can be shown in Figure 3. The plots in Figure 3 show the 
relationship between the variables and the factor of safety 
(another name for the limit state surface). The plot that 
controls the value of the factor of safety lies below the 
remaining plots. Figure 3 shows that for values less than 
50% of the range of a given mean value, cohesion controls 
the value of the factor safety (as discussed above), but for 
values greater than 50% the slope height does. If all the 
variables were randomly sampled from their respective 
probability functions, it would be possible for the probability 
of failure to be less than 100%, as it is with the FORM 
method, as indicated by the black circles in Figure 3. In 
other words, some combination of values above the 
horizontal for a factor of safety equal to one can 
theoretically occur. Statistically speaking, if half the total 
length of lines lie above one, and half below, the probability 
of failure would be 50%.  
 
3.4 Probability of Meeting Acceptance Criteria 
 
As discussed above the probability of failure can be defined 
by Equation 7. The probability of failure is not unique in the 

sense that failure can be defined in a number of different 
ways, such as the ultimate limit state, serviceability limit 
state, or as falling below a given factor of safety, i.e. the 
acceptance criteria. The example used by the author set 
the factor of safety for a planar-type failure as unity. From 
this the probability of failure can be assessed using FORM 
by minimizing the reliability and setting the limit state 
function  to zero by changing the matrix of reduced 
variables to the required set of values.  

Another use of FORM is to assess how far from the 
mean that data can be taken to reach an acceptable level 
of risk. In essence, what is the level of confidence the 
designer can have in the data to produce an acceptable 
outcome.  

 
4 DISCUSSION 
 
4.1 Data Collection 
 
The author’s experience preparing this paper has 
reinforced upon him the need for high quality geological 
data for even the simplest of deterministic analyses. The 
use of probabilistic methods requires the utmost care in 
scrutinizing the data for quality. Outliers can easily skew a 
distribution towards erroneous means and variances, 
resulting in invalid solutions to problems. 

Today’s technology (ground and air based 
photogrammetry and LiDAR, InSAR, etc.) provide 
designers with an opportunity to collect vast amounts of 
data that when used appropriately, can provide a wealth of 
information. However, ground truthing and validation 
against one or more other data collection techniques 
should not be abandoned. It is very likely that a line or 
window survey of a rock mass with a geological compass 
and one’s bare hands will never truly be replaced by 
technology. That being said, manual, or “analog” methods 
of data collection should be revised to match that of digital 
techniques so that manual data collection can be used to 
back-check digital mapping. For instance, persistence has 
typically been mapped as the longest surface expression 
of a plane regardless of whether it is parallel to the slope 
face, which would equate to the “out-of-plane” dimension 
in a 2D analysis, or perpendicular to the slope face, which 
would be the plane of sliding. The author has had a few, 
and at times heated debates, over which direction is more 
important. In reality both are, as each gives a unique 
measure of the slope and each can be used to back-check 
the calculation of dip and dip direction calculated by digital 
mapping software (Haneberg et al. 2006).  

Consistency is also a key element of any data collection 
program. If not simply to make corrections to errors in the 
method of collection, but to make sure that post-processing 
calculations to not lead to errors in the designs engineers 
produce. For instance, all measurements during a 
geological mapping program should be measured 
horizontally and vertically, or parallel to the feature being 
mapped. Switching back and forth will result in errors when 
calculations, such as for true spacing which would be used 
to assess the potential location of tension cracks. 

 
4.2 Statistical Distribution of Data 
 



 

It is imperative that the data be fitted to the appropriate 
distribution before proceeding with any probabilistic 
analyses. Basic assumptions regarding the mean and 
standard deviation based on the notion that any data will fit 
a given distribution without fully assessing that fact, could 
lead to erroneous results.  

As described above, the synthetic data for the 
measured independent variables was set at random log-
normally distributed data, and then the normal mean, 
variance, standard deviation, and arithmetic moments 
were calculated. The depth of water in the tension crack, 
and acting on the failure plane, a truncated exponential 
distribution was used with the mean set at 50% of the mean 
depth of the tension crack. A truncated exponential 
distribution was also used to limit the height of the failure 
block in the range of 60 m to 100 m.  

Data that the author is most familiar with tends to fit a 
log-normal distribution, hence that distribution was chosen 
for the synthetic data use in this study. That is not to say 
that other distributions would not be more suitable for 
natural data sets. For instance, the poles plotted on a 
stereonet are assumed to fit a Fisher distribution 
(Diederichs 1990). This would need to be considered in 
probabilistic assessments where the dip and dip direction 
are both used, however, in the case of planar failure, only 
the dip of the planar sliding surface need be considered, 
and should be fitted to a discrete univariate distribution.  

The truncated exponential function was used for the 
height of the failure block and height of water in the tension 
crack. The height of water will never be greater than the 
depth of the tension crack and never less than zero. The 
truncated exponential distribution is ideal for bounding the 
values of zw to this range. The same can be said for the 
height of a failure block if it is known to have a fixed range 
of heights between zero and a non-negative integer or two 
non-zero and non-negative integers.  

 
4.3 Complexity of Analysis 
 
Examples of the FORM being used to assess the 
probability of failure for rock slopes have tended to focus 
only two or three independent random variables (i.e. Low 
2008). In this study, the correlation matrix is developed for 
all but three of the independent random variables that could 
otherwise be included (as noted above 𝐽𝑅𝐶, 𝐽𝐶𝑆, and 𝜑 
were used as deterministic variables). As far as the author 
can determine, this is the most complex assessment of the 
probability of failure of a planar-type failure mechanism in 
a rock slope using the FORM that has been carried out to 
date.  

The correlation matrix for all the independent variables 
considered, required the computation of 190 equations of 
covariance and subsequently correlation coefficient. This 
resulted in the production of two 20 by 20 matrices. 
However, as the author has pointed out, the covariance of 
a variable with itself is one, solutions to 20 equations of 
covariance are known. Additionally, as independent 
variables are not correlated, by definition, a further nine 
solutions are known. More solutions can easily be known 
by visually assessing the equations for each dependent 
variable to determine if correlation exists between 
variables. 

 
4.4 Rock Support 
 
The inclusion of rock support to the analyses would require 
defining the tensile and/or shear capacity of the support 
and the angle at which it is installed. Including rock support 
in the analyses will result in the mean point being moved 
further away from the design point. The matrix of reduced 
variables will then be recalculated resulting in a lower 
probability of failure since 𝛽 will be larger. 
 
5 CONCLUSIONS 
 
This paper summarizes the implementation of FORM in a 
spreadsheet to assess the probability of failure of a planar-
type failure in a rock mass. The problem is illustrated by 
defining the independent random variables and the 
dependent variables. Although all variables can be either 
independent or dependent, the author chose to keep the 
shear strength variables as deterministic to control the 
outcome of the solution to illustrate the power of FORM. 

Although FORM was shown to be easy to implement in 
a spreadsheet, the number of variables that can be 
independent and dependent can make the execution of 
FORM complex. However, once the problem is defined and 
implanted, it can be replicated again and again using the 
same spreadsheet.    

The author intends to implement FORM for other uses 
in the future to aid in the assessment of risk. As long as 
there is a closed-form solution for a problem, and a failure 
surface can be defined, FORM can be used to assess the 
probability of failure.  
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