Application of the First Order Reliability Method to Planar-Type Failure in a Hard-Rock Slope to Assess the Probability of Failure

Application of the First Order Reliability Method to Planar-Type Failure in a Hard-Rock Slope to Assess the Probability of Failure

Author: Charlie Harrison
Conference: Geohazards 7
Date: June 3-6, 2018

ABSTRACT
The First Order Reliability Method (FORM) is a semi-probabilistic reliability analysis method devised to evaluate the reliability of a system. The stability of the system must be a function of two or more probabilistic variables that have a mean, and standard deviation. The correlation between the probabilistic variables must be determined, which can be difficult, as will be show, independent variables can be functions of independent variables. The FORM considers any deterministic variables also included in the stability function as having a mean equal to their value, and a standard  deviation of zero.

The equations for quantifying the stability of a planar-type failure mechanism in a hard-rock slope are available in close-form and can be easily implemented in a spreadsheet, and checked against a commercially available limit equilibrium method software program. The author uses a worked example to show the application of FORM to a hard-rock slope susceptible to the planar-type failure mechanism. The author provides commentary on the application of the FORM in engineering practice given that the user will find it difficult to define or measure the correlation factor(s) and reduction factors.

 

Download the full technical paper.

Download

 

Perspectivas recientes

Septiembre 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
Septiembre 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
Septiembre 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
Septiembre 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
Agosto 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
Julio 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
Julio 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
Junio 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
Junio 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
Junio 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
Mayo 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
Abril 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
Noviembre 2024
Knight Piésold: Commitment to African Excellence
Noviembre 2024
Design of a Co-disposal Facility for Thickened Tailings and Potentially Acid-generating Waste Rock
Noviembre 2024
Compaction Sensitivity in Tailings Stack Infiltration Modeling: Unsaturated Properties Uncertainty Analysis
Noviembre 2024
Volumes of Dam Material Mobilized by Erosion During Tailings Dam Failure Events
Octubre 2024
Estudio de rotura de una presa de jales en la zona centro-norte de México
Septiembre 2024
Grouting to Reduce Seepage at Neckartal Dam, Namibia
Septiembre 2024
Influence of Pre-Existing Mobilized Zones on B3 Cave Propagation and Initial Subsidence at the New Afton Mine
Septiembre 2024
Importance of Indigenous Community Engagement related to ARD/ML and Long-Term Water Quality