Box Canyon Hydroelectric Project

Box Canyon Hydroelectric Project

Publication: Canadian Consulting Engineer
Issue: October/November 2017
Issue Title: 2017 Canadian Consulting Engineering Awards

The 16 MW Box Canyon Hydroelectric project may have the most hydraulically complex design of any run-of-river hydroelectric project in North America, if not the world. It has nine intake structures on different creeks and tributaries, all feeding into a single, high-pressure penstock that directs water to the powerhouse containing a six jet vertical axis Pelton turbine generating unit.

The project has three main intakes and six tributary intakes that address the unique hydrology, river morphology, and fish species distribution along McNab Creek and its tributaries. It has an 8.6-km-long water conveyance system of interconnecting pipelines and high-pressure penstocks that handles varying intake elevations and flow contributions, requiring the addition and design of surge facilities and check valves.

The project design also takes into account the complex hydraulic transient pressures (water hammer), and provides unique ecological flow releases at each of the diversion weirs. Knight Piésold Ltd. assisted Box Canyon Hydro Corp. in project development, from concept development through to operational monitoring.

The original project concept was a 7 MW facility with a single intake on Box Canyon Creek. Knight Piésold optimized the design to the current 16 MW facility with multiple intakes, addressing complexities not typical in a single intake, run-of-river hydroelectric project.

The water conveyance system includes open channel sections, which divert water from the tributary intake to the main intakes. Given the steep terrain, all penstock branches were installed below surface to overcome challenging construction and design conditions that were encountered at several sections of its length.

 

Download the full article.

Download

Perspectivas recientes

Octubre 2025
2025 CCE Awards Showcase: Salton Sea Species Conservation Habitat Project
Septiembre 2025
Klamath River Renewal Project - Dam Breach Analysis Used for Designing the Final Breach of the Iron Gate Dam
Septiembre 2025
Klamath River Renewal Project - Optimization of the Iron Gate Dam Historic Diversion Tunnel Using CFD Analysis to Support Reservoir Drawdown
Septiembre 2025
Klamath River Renewal Project - Design of Dam Modification for Reservoir Drawdown, River Diversion and Dam Removal of the Copco No. 1 Dam
Septiembre 2025
Drawdown Modelling of Four Reservoirs on the Klamath River to Support Hydroelectric Facility Decommissioning
Septiembre 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
Septiembre 2025
Lessons Learned in the Interpretation of SCPT on a Tailings Facility Using the CSSM Framework
Septiembre 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
Septiembre 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
Septiembre 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
Agosto 2025
The Evolution of Structural Domains from Scoping Study to Operations for the Meadowbank Mine – Amaruq Site
Agosto 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
Julio 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
Julio 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
Junio 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
Junio 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
Junio 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
Mayo 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
Abril 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
Noviembre 2024
Knight Piésold: Commitment to African Excellence