Design of Coarse Tailings and Dry Ash Disposal Facilities

Design of Coarse Tailings and Dry Ash Disposal Facilities

Author: Andrew Copeland, Justin Teixeira
Conference: Paste 2019
Date: May 8-10, 2019

ABSTRACT
The diamond industry has been disposing of its coarse tailings using conveyor and stacker systems for many years. The process plant typically generates two tailings products, a grit fraction (sand) and a coarse fraction (gravel), which are often combined on one dump. In some cases, the dump is stable with a single steep slope angle. However, in other situations a composite slope forms with settlement and intermittent slumping behaviour, this impacts on both design and operation.

The thermal coal industry has also been disposing of dry ash for many years using either conveyor/stacking systems or haul trucks. Both systems work well, but the costs, deposition plans and stability aspects differ. Management of water and dust are also key factors.

There are a number of key design and operational aspects that are similar between these diamond tailings and ash facilities, and would apply equally to filtered and dry stacked tailings. This paper aims to examine these similarities and show how these learnings could be built into new filtered tailings designs and operations to make them more efficient and stable.

 

Download the full technical paper.

Download

Perspectivas recientes

Septiembre 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
Septiembre 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
Septiembre 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
Septiembre 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
Agosto 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
Julio 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
Julio 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
Junio 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
Junio 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
Junio 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
Mayo 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
Abril 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
Noviembre 2024
Knight Piésold: Commitment to African Excellence
Noviembre 2024
Design of a Co-disposal Facility for Thickened Tailings and Potentially Acid-generating Waste Rock
Noviembre 2024
Compaction Sensitivity in Tailings Stack Infiltration Modeling: Unsaturated Properties Uncertainty Analysis
Noviembre 2024
Volumes of Dam Material Mobilized by Erosion During Tailings Dam Failure Events
Octubre 2024
Estudio de rotura de una presa de jales en la zona centro-norte de México
Septiembre 2024
Grouting to Reduce Seepage at Neckartal Dam, Namibia
Septiembre 2024
Influence of Pre-Existing Mobilized Zones on B3 Cave Propagation and Initial Subsidence at the New Afton Mine
Septiembre 2024
Importance of Indigenous Community Engagement related to ARD/ML and Long-Term Water Quality