Estimate of Settlement of a Tailings Dam Founded on Collapsible Soils: Case Study

Estimate of Settlement of a Tailings Dam Founded on Collapsible Soils: Case Study

Author: Gavi Sotelo, Solange Paihua
Conference: Tailings 2017: 4th International Seminar
Date: July 12-14, 2017

ABSTRACT
Collapsible soils are common in arid regions near the southern coast of Peru and often have a loose, metastable and brittle structure. They are usually of an eolian or alluvial origin with very low moisture content, negative pore pressures, and interparticle contacts that are partially cemented by salts. Thus, making them prone to sudden and substantial settlements and loss of shear strength by quenching of the negative pore pressures and dissolution of the salts if the moisture content is increased. Rapid rearrangement of the particles into a denser matrix can then occur causing the collapse phenomena. If kept dry and in their natural state they may remain metastable and can have moderate to high strength and stiffness. But in engineered applications, since these soils have physical and mechanical properties strongly influenced by moisture content, if wetting is a possibility, engineered mitigations must be adopted to either remove them or adequately accommodate their potential collapse.

The purpose of this paper is to present an estimate of the settlements that are expected to be experienced by a particular tailings dam founded on collapsible soils in southern Peru (case study). The estimates were made using a simplified approach based on the collapse index and collapse potential findings from laboratory testing (ASTM D5333) and were then corroborated by 2-D finite element numerical modeling using GeoStudio software. The results indicated that settlements in the order of 1.6 m could be expected at the time of start-up of the facility, which is the most critical period, when the supernatant water pond will be located against the dam and will lead to significant seepage and therefore wetting of the foundation materials.

Engineered solutions to mitigate the potential for settlement were adopted and included either excavating and replacing the soils with dense compacted fill or installing a geomembrane to substantially reduce potential wetting of the foundation.

 

Download the full technical paper.

Download

 

Perspectivas recientes

Septiembre 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
Septiembre 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
Septiembre 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
Septiembre 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
Agosto 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
Julio 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
Julio 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
Junio 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
Junio 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
Junio 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
Mayo 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
Abril 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
Noviembre 2024
Knight Piésold: Commitment to African Excellence
Noviembre 2024
Design of a Co-disposal Facility for Thickened Tailings and Potentially Acid-generating Waste Rock
Noviembre 2024
Compaction Sensitivity in Tailings Stack Infiltration Modeling: Unsaturated Properties Uncertainty Analysis
Noviembre 2024
Volumes of Dam Material Mobilized by Erosion During Tailings Dam Failure Events
Octubre 2024
Estudio de rotura de una presa de jales en la zona centro-norte de México
Septiembre 2024
Grouting to Reduce Seepage at Neckartal Dam, Namibia
Septiembre 2024
Influence of Pre-Existing Mobilized Zones on B3 Cave Propagation and Initial Subsidence at the New Afton Mine
Septiembre 2024
Importance of Indigenous Community Engagement related to ARD/ML and Long-Term Water Quality