Geotechnical Characterization of Collapsible Soils Cemented by Salts - A Case Study

Geotechnical Characterization of Collapsible Soils Cemented by Salts - A Case Study

Author: G. Sotelo, S. Orellana, J. Macedo, H. Jaffal, G. Espinoza, Z. Xu, K. Stokoe, C. El Mohtar
Conference: 7th lnternational Conference on Earthquake Geotechnical Engineering
Date: June 17-20, 2019

ABSTRACT
Collapsible soils are typically found in arid regions and often have an aeolian or alluvial origin. In their natural state, they have a low moisture content and high initial or peak shear strength and stiffness due to their cemented structure (e.g. by the presence of salts). However, when these soils are subjected to wetting or saturation, the salts can dissolve resulting in a reduction of cementation and the peak strength and stiffness. This paper presents a summary of the geotechnical characterization performed on a deposit of collapsible soil at a proposed mine site near the southern coast of Peru, with particular emphasis on the dynamic characteristics. The site is located in a very high seismic area, which makes the dynamic characterization of these materials of primary importance. The geotechnical field investigation included drilling of boreholes, excavation of test pits, collection of samples, and execution of in-situ field tests. Undisturbed samples were carefully collected and oedometer, direct shear, consolidated drained triaxial, cyclic simple shear and resonant column tests were performed on them, while disturbed samples were also collected and tested for index properties and soluble salts content. The testing on undisturbed specimens was carried out at their natural moisture content state and after being subjected to wetting and the results revealed interesting insights in terms of the geotechnical properties and mechanical response of these materials as they lose the effects of salt cementation.

 

Download the full technical paper.

Download

Perspectivas recientes

Septiembre 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
Septiembre 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
Septiembre 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
Septiembre 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
Agosto 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
Julio 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
Julio 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
Junio 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
Junio 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
Junio 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
Mayo 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
Abril 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
Noviembre 2024
Knight Piésold: Commitment to African Excellence
Noviembre 2024
Design of a Co-disposal Facility for Thickened Tailings and Potentially Acid-generating Waste Rock
Noviembre 2024
Compaction Sensitivity in Tailings Stack Infiltration Modeling: Unsaturated Properties Uncertainty Analysis
Noviembre 2024
Volumes of Dam Material Mobilized by Erosion During Tailings Dam Failure Events
Octubre 2024
Estudio de rotura de una presa de jales en la zona centro-norte de México
Septiembre 2024
Grouting to Reduce Seepage at Neckartal Dam, Namibia
Septiembre 2024
Influence of Pre-Existing Mobilized Zones on B3 Cave Propagation and Initial Subsidence at the New Afton Mine
Septiembre 2024
Importance of Indigenous Community Engagement related to ARD/ML and Long-Term Water Quality