Selection of Undrained Shear Strength Parameters of Residual Soils and their Application in Stability Analysis

Selection of Undrained Shear Strength Parameters of Residual Soils and their Application in Stability Analysis

Authors: B. Dareeju, T. Rowles, Y. Xu and A. Dissanayake
Conference: Mine Waste and Tailings 2021
Date: July 1-2, 2021

ABSTRACT
Recent updates on tailings dam design guidelines require analysis of undrained (short-term) stability with the application of the SHANSEP model. The SHANSEP model, which was originally developed for alluvial soils, predicates that the Undrained Shear Strength (Su) increases with increasing effective stress. Residual soils by their nature do not necessarily follow this relationship. This paper examines an alternate method to define Su over a range of effective stress conditions for residual soils.

Residual soils, formed by weathering of their parent rocks, are generally micro-structured in nature. The microstructural features, such as interparticle bonding, play a fundamental role in stress-strain behaviour of the residual soils. As interparticle bonding is independent of effective stress and void ratio, the undrained shear strength of residual soils is expected to be less dependent on effective stress than alluvial soils, especially at low stress levels. A series of triaxial tests conducted on residual soils, however, indicated that the undrained shear strength and the undrained shear strength ratio (Su/σv’) are to a degree dependant on effective stress. It was found that the undrained shear strength ratio is significantly higher under low stress levels and progressively reduces with increasing effective stress. Based on the laboratory testing data, a strength function with varying undrained shear strength ratios can be developed for the residual soils under the stress range anticipated for a design of a tailings dam. This includes capping the input undrained strength at lower effective stresses based on the drained (effective) and minimum undrained strength. The Factor of Safety (FOS) calculated for the embankment utilising the traditional limit equilibrium (LE) method indicated the application of undrained strength function for the residual soils can provide a significant optimisation for the embankment design compared to adopting a constant undrained shear strength ratio or constant undrained shear strength in the design.

 

Download the full paper.

Download

Perspectivas recientes

Noviembre 2024
Design of a Co-disposal Facility for Thickened Tailings and Potentially Acid-generating Waste Rock
Noviembre 2024
Compaction Sensitivity in Tailings Stack Infiltration Modeling: Unsaturated Properties Uncertainty Analysis
Noviembre 2024
Volumes of Dam Material Mobilized by Erosion During Tailings Dam Failure Events
Octubre 2024
Estudio de rotura de una presa de jales en la zona centro-norte de México
Septiembre 2024
Influence of Pre-Existing Mobilized Zones on B3 Cave Propagation and Initial Subsidence at the New Afton Mine
Septiembre 2024
Importance of Indigenous Community Engagement related to ARD/ML and Long-Term Water Quality
Septiembre 2024
Effective Assessment of ARD/ML Potential for Non-Mining Infrastructure Projects
Agosto 2024
CESA Aon Engineering Excellence Awards 2024: Kikagati Hydropower Plant
Julio 2024
Interview: Mario Lazo Emparanza, Regional Manager, Knight Piésold Chile
Julio 2024
Visionary Leadership: Driving Engineering Excellence in Africa with Vishal Haripersad
Junio 2024
Concept Feasibility and Predicted Behavior of Mining a Rock Tower with Drill-and-Blast Undermining Using Dynamic Three-Dimensional Discontinuum Numerical Models
Junio 2024
Estimating Shear Stress within a Clay Foundation Using the Burgers-Creep Model
Junio 2024
Laboratory Study of Manganese Mining Overburden Mixed with Lime as a Paving Subbase Layer
Mayo 2024
Knight Piésold: Ensuring African Excellence in the DRC
Mayo 2024
Wild Coast N2 Highway Project Taking Shape
Mayo 2024
Interview: Guillermo Barreda, Gerente General, Knight Piésold Perú
Abril 2024
Risk Mitigation through Design Optimization Utilizing Seasonal Effects under Arctic Conditions at the Amaruq Mine
Abril 2024
Synthetic Rock Mass Modeling of Progressive Unravelling and Overall Slope Stability Using the Discrete Element Method
Abril 2024
Operational Slope Stability Risk Management for Large Open Pits at the Mount Milligan Mine – A Case Study
Abril 2024
Risk and Informed Approach to TSF Design and Operation