State of the Art Thermal Analysis for Neckartal Dam

State of the Art Thermal Analysis for Neckartal Dam

Author: R.P. Greyling, C. Zhang
Conference: AFRICA 2017
Date: March 14-16, 2017

INTRODUCTION
The Neckartal Dam Project is currently under construction on the Fish River near Keetmanshoop in Namibia. The main purpose of the dam is to form an impoundment of 857 million m3 that will supply irrigation water to 5000 ha of agricultural development in the Karas Region. The outlet works at the dam is also equipped with a mini hydropower facility (3MW), which generates from the ecological releases made.

The dam wall is a 78,5m high mass gravity structure, aligned on a curved upstream axis and constructed using a zoned roller compacted concrete (RCC) mix. The crest length measures approximately 520m from abutment to abutment. The dam is equipped with a 395m long uncontrolled ogee spillway crest, which is divided into two segments. The main spillway defining full supply level (FSL) at 787,5 mASL is 290m long, and caters for flood peaks between the 5 to 10-year AEP (Annual Exceedance Probability) flood event. The raised spillway segment at 789,9 mASL is 105m long, positioned on the right flank for passage up to the SED (Safety Evaluation Discharge) and was specifically designed to reduce flow down the abutment that caused circulating flow downstream of the apron.

The dams structural section is a conventional gravity profile with sloped upstream face, 1:0,2 (V:H) and a stepped downstream face, defined on a slope of 1:0,75 (V:H). The dam is presently under construction by Salini Impregilo and will contain some 900 000 m3 of RCC upon construction completion.

The project site is located in a semi-arid region, known for its hot desert climate with long, very hot summers and moderate to warm winters. Average monthly temperatures vary over approximately 14ºC throughout the year between winter and summer. Considering this temperature variation and owing to the size and significance of the structure, strict temperature controls are being enforced, achieved by restricting the allowable RCC placement temperature to 28ºC by means of a dedicated aggregate chilling plant.

In this paper, the authors present a summary of the related thermal analyses applied for the design of Neckartal  Dam, undertaken to determine the magnitude of the anticipated thermal stresses that will develop and ultimately, to evaluate the potential for cracking within the RCC dam. In this manner, the typical approach and techniques required for a transient thermal and stress analysis of a major RCC dam is demonstrated.

 

Download the full technical paper.

Download

 

Perspectivas recientes

Noviembre 2024
Design of a Co-disposal Facility for Thickened Tailings and Potentially Acid-generating Waste Rock
Noviembre 2024
Compaction Sensitivity in Tailings Stack Infiltration Modeling: Unsaturated Properties Uncertainty Analysis
Noviembre 2024
Volumes of Dam Material Mobilized by Erosion During Tailings Dam Failure Events
Octubre 2024
Estudio de rotura de una presa de jales en la zona centro-norte de México
Septiembre 2024
Influence of Pre-Existing Mobilized Zones on B3 Cave Propagation and Initial Subsidence at the New Afton Mine
Septiembre 2024
Importance of Indigenous Community Engagement related to ARD/ML and Long-Term Water Quality
Septiembre 2024
Effective Assessment of ARD/ML Potential for Non-Mining Infrastructure Projects
Agosto 2024
CESA Aon Engineering Excellence Awards 2024: Kikagati Hydropower Plant
Julio 2024
Interview: Mario Lazo Emparanza, Regional Manager, Knight Piésold Chile
Julio 2024
Visionary Leadership: Driving Engineering Excellence in Africa with Vishal Haripersad
Junio 2024
Concept Feasibility and Predicted Behavior of Mining a Rock Tower with Drill-and-Blast Undermining Using Dynamic Three-Dimensional Discontinuum Numerical Models
Junio 2024
Estimating Shear Stress within a Clay Foundation Using the Burgers-Creep Model
Junio 2024
Laboratory Study of Manganese Mining Overburden Mixed with Lime as a Paving Subbase Layer
Mayo 2024
Knight Piésold: Ensuring African Excellence in the DRC
Mayo 2024
Wild Coast N2 Highway Project Taking Shape
Mayo 2024
Interview: Guillermo Barreda, Gerente General, Knight Piésold Perú
Abril 2024
Risk Mitigation through Design Optimization Utilizing Seasonal Effects under Arctic Conditions at the Amaruq Mine
Abril 2024
Synthetic Rock Mass Modeling of Progressive Unravelling and Overall Slope Stability Using the Discrete Element Method
Abril 2024
Operational Slope Stability Risk Management for Large Open Pits at the Mount Milligan Mine – A Case Study
Abril 2024
Risk and Informed Approach to TSF Design and Operation