Tailings Mobilization Estimates for Dam Breach Studies

Tailings Mobilization Estimates for Dam Breach Studies

Author: Daniel Fontaine, P.Eng., Violeta Martin, Ph.D., P.Eng.
Conference: Tailings and Mine Waste 2015
Date: October 25-28, 2015

Quantitative assessment of potential consequences caused by a flood from a dam breach of a tailings facility requires an estimate of the volume of water and tailings released during the breach. A methodology for estimating the volume of tailings mobilized by the free water stored in the pond and the resulting initial flood wave following a dam breach is presented.

Tailings mobilization can be estimated as a function of the stored water volume and the physical characteristics of the tailings deposit. The result is an estimate of the total outflow consisting of volumes of free water, and tailings and interstitial water that could be potentially mobilized. This approach indicates that a larger operating pond would mobilize more tailings than a smaller pond.

Similarly, a tailings deposit that is more consolidated or only partially saturated would result in a smaller volume of tailings being released in a breach. These are the primary attributes of stored tailings affecting the potential consequences of a breach. An understanding of these attributes allows the practitioner to use the results of the analysis as a decision making tool for decreasing the consequences of failure.

 

Download the full technical paper.

Download

Perspectivas recientes

Septiembre 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
Septiembre 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
Septiembre 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
Septiembre 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
Agosto 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
Julio 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
Julio 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
Junio 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
Junio 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
Junio 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
Mayo 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
Abril 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
Noviembre 2024
Knight Piésold: Commitment to African Excellence
Noviembre 2024
Design of a Co-disposal Facility for Thickened Tailings and Potentially Acid-generating Waste Rock
Noviembre 2024
Compaction Sensitivity in Tailings Stack Infiltration Modeling: Unsaturated Properties Uncertainty Analysis
Noviembre 2024
Volumes of Dam Material Mobilized by Erosion During Tailings Dam Failure Events
Octubre 2024
Estudio de rotura de una presa de jales en la zona centro-norte de México
Septiembre 2024
Grouting to Reduce Seepage at Neckartal Dam, Namibia
Septiembre 2024
Influence of Pre-Existing Mobilized Zones on B3 Cave Propagation and Initial Subsidence at the New Afton Mine
Septiembre 2024
Importance of Indigenous Community Engagement related to ARD/ML and Long-Term Water Quality