The Assessment of the Overall Probability of Failure of Hard-rock Slopes Using the First Order Reliability Method and the Hunting Equation Method

The Assessment of the Overall Probability of Failure of Hard-rock Slopes Using the First Order Reliability Method and the Hunting Equation Method

Author: Charlie Harrison
Conference: GeoEdmonton 2018
Date: September 23-26, 2018

ABSTRACT
The overall probability of failure of a hard-rock slope is assessed using a combination of the First Order Reliability Method (FORM) and the Hunting Equation Method. FORM is used to assess the probability for each potential failure mode, which considers the correlation of the variables (e.g. discontinuity friction angle and cohesion). The overall probability of failure of the rock slope is then assessed using the Hunting Equation Method by combining every potential failure mode’s probability of failure.

The assessment outlined above is applied to a hard-rock slope that is not susceptible to rotational failure, which allows for the application of simple, closed form limit equilibrium methods for planar- and wedge-type failures in a spreadsheet. All the potential modes of failure for a slope, which could include multiple planar- and wedge -type failure mechanisms must be assessed individually. Consideration must also be given to multiple structural and geological domains within a slope, as the potential failure modes in each domain will need to be assessed and each domain may have a unique set of parameters that need to be assessed and correlated.

The author provides an example assessment of a typical rock slope located in the Coastal and Cascade Mountains, where hard rock slopes are in abundance. The potential failure modes are assessed, including the correlation of the variables. The overall probability of failure is assessed in the absence of rock support.

 

Download the full technical paper.

Download

Perspectivas recientes

Octubre 2024
Estudio de rotura de una presa de jales en la zona centro-norte de México
Septiembre 2024
Influence of Pre-Existing Mobilized Zones on B3 Cave Propagation and Initial Subsidence at the New Afton Mine
Septiembre 2024
Importance of Indigenous Community Engagement related to ARD/ML and Long-Term Water Quality
Septiembre 2024
Effective Assessment of ARD/ML Potential for Non-Mining Infrastructure Projects
Agosto 2024
CESA Aon Engineering Excellence Awards 2024: Kikagati Hydropower Plant
Julio 2024
Interview: Mario Lazo Emparanza, Regional Manager, Knight Piésold Chile
Julio 2024
Visionary Leadership: Driving Engineering Excellence in Africa with Vishal Haripersad
Junio 2024
Concept Feasibility and Predicted Behavior of Mining a Rock Tower with Drill-and-Blast Undermining Using Dynamic Three-Dimensional Discontinuum Numerical Models
Junio 2024
Estimating Shear Stress within a Clay Foundation Using the Burgers-Creep Model
Junio 2024
Laboratory Study of Manganese Mining Overburden Mixed with Lime as a Paving Subbase Layer
Mayo 2024
Knight Piésold: Ensuring African Excellence in the DRC
Mayo 2024
Wild Coast N2 Highway Project Taking Shape
Mayo 2024
Interview: Guillermo Barreda, Gerente General, Knight Piésold Perú
Abril 2024
Risk Mitigation through Design Optimization Utilizing Seasonal Effects under Arctic Conditions at the Amaruq Mine
Abril 2024
Synthetic Rock Mass Modeling of Progressive Unravelling and Overall Slope Stability Using the Discrete Element Method
Abril 2024
Operational Slope Stability Risk Management for Large Open Pits at the Mount Milligan Mine – A Case Study
Abril 2024
Risk and Informed Approach to TSF Design and Operation
Febrero 2024
Empoderamiento y Resiliencia
Enero 2024
Balancing Act: Water Usage Management Vital for a Sustainable Future
Enero 2024
A Difficult Balance Between Engineering, Environmental, Social and Economic Aspects