Box Canyon Hydroelectric Project

Box Canyon Hydroelectric Project

Publication: Canadian Consulting Engineer
Issue: October/November 2017
Issue Title: 2017 Canadian Consulting Engineering Awards

The 16 MW Box Canyon Hydroelectric project may have the most hydraulically complex design of any run-of-river hydroelectric project in North America, if not the world. It has nine intake structures on different creeks and tributaries, all feeding into a single, high-pressure penstock that directs water to the powerhouse containing a six jet vertical axis Pelton turbine generating unit.

The project has three main intakes and six tributary intakes that address the unique hydrology, river morphology, and fish species distribution along McNab Creek and its tributaries. It has an 8.6-km-long water conveyance system of interconnecting pipelines and high-pressure penstocks that handles varying intake elevations and flow contributions, requiring the addition and design of surge facilities and check valves.

The project design also takes into account the complex hydraulic transient pressures (water hammer), and provides unique ecological flow releases at each of the diversion weirs. Knight Piésold Ltd. assisted Box Canyon Hydro Corp. in project development, from concept development through to operational monitoring.

The original project concept was a 7 MW facility with a single intake on Box Canyon Creek. Knight Piésold optimized the design to the current 16 MW facility with multiple intakes, addressing complexities not typical in a single intake, run-of-river hydroelectric project.

The water conveyance system includes open channel sections, which divert water from the tributary intake to the main intakes. Given the steep terrain, all penstock branches were installed below surface to overcome challenging construction and design conditions that were encountered at several sections of its length.

 

Download the full article.

Download

Recent Insights

September 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
September 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
September 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
September 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
August 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
July 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
July 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
June 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
June 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
June 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
May 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
April 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
November 2024
Knight Piésold: Commitment to African Excellence
November 2024
Design of a Co-disposal Facility for Thickened Tailings and Potentially Acid-generating Waste Rock
November 2024
Compaction Sensitivity in Tailings Stack Infiltration Modeling: Unsaturated Properties Uncertainty Analysis
November 2024
Volumes of Dam Material Mobilized by Erosion During Tailings Dam Failure Events
October 2024
Estudio de rotura de una presa de jales en la zona centro-norte de México
September 2024
Grouting to Reduce Seepage at Neckartal Dam, Namibia
September 2024
Influence of Pre-Existing Mobilized Zones on B3 Cave Propagation and Initial Subsidence at the New Afton Mine
September 2024
Importance of Indigenous Community Engagement related to ARD/ML and Long-Term Water Quality