Characterizing and Stabilizing a Historical Tailings Facility: The Rheology to Soil Mechanics Continuum

Characterizing and Stabilizing a Historical Tailings Facility: The Rheology to Soil Mechanics Continuum

Author: Amy Adams, Daniel Friedman, Scott Davidson
Conference: Tailings and Mine Waste 
Date: November 5-8, 2017

ABSTRACT
Historical tailings facilities often contains materials that have a consistency that ranges from fluid to solid, depending on a number of factors such as particle size, depth, drain-age, and depositional history. Historical impoundments may contain saturated semi-fluid mate-rials at depth, long after tailings deposition has ceased and after surface reclamation has been completed.

This paper presents a case study of the investigations and testing relating to the design and pro-gressive implementation of remedial stabilization measures for the historical tailings facility at the New Afton Mine located in British Columbia, Canada. It was necessary to evaluate both the geotechnical conditions (soil characteristics) of the tailings mass, as well as the potential rheo-logical behaviour (fluid flow characteristics) of loose saturated zones that could be susceptible to liquefaction and migration into the cave zone or underground workings. Therefore, this study relies on integration of the principles of advanced soil mechanics in combination with fluid mechanics and rheology, particularly in relation to slurry viscosity and flow behaviour of contractive potentially liquefiable tailings materials.

A rheological model was developed to characterize the yield stress and flowability of the his-torical tailings deposit. In-situ and laboratory testing was completed to understand the variabil-ity of the tailings in the facility. Simple index properties including moisture content and clay-sized particle fraction were used to characterize the tailings rheology. A field-scale trial pro-gram was implemented to demonstrate that the tailings could be quickly and effectively stabi-lized by densification and dewatering using wick drains, consolidation loading, and dewatering wells.

 

Download the full technical paper.

Download

 

Recent Insights

May 2023
Is the Implementation of Dry Stacking for Tailings Storage Increasing? A Southern African Perspective
February 2023
Canadian Consulting Engineer's Lifetime Achievement Awards: Jeremy Haile
February 2023
Geotechnical Characterization of Collapsible Salty Sands Subjected to Monotonic and Cyclic Loadings – A Case Study for Areas with High Seismicity
November 2022
Application of the 3D Limit Equilibrium Method in Tailings Dam Breach Analysis
November 2022
Evaluation of Tailings Behaviour for Dam Breach Assessments
November 2022
Tailings Improvement by Stress-Densification from Waste Rock Capping
November 2022
Transforming Tailings Management Systems toward Alignment with the GISTM: A Case History
October 2022
Managing Excessive Pit Wall Deformation of Weak Rock Mass
October 2022
State-of-the-art Method for Estimating Long-term Hydroclimatic Conditions for Tailing Dam Water Management and Dam Safety Planning
August 2022
Observed Subsidence Progression at New Afton Mine in Response to Lift 1 Mining
June 2022
Hydrometric Monitoring and Effluent Discharge Mixing in Challenging Natural Conditions
May 2022
Inundation Modelling of Non-Newtonian Tailings Dam Breach Outflows
May 2022
Video: Tailings Management Compliancy Picks Up Momentum
May 2022
A Catch up with...Richard Elmer
February 2022
Engineer of Record Services for Tailings Facilities
November 2021
Knight Piésold's Projects Commended at Prestigious Awards
November 2021
Advances in Ensuring Tailings Dam Safety
November 2021
Gearing Up for Growth in Zambia
October 2021
Climate Change Effects on Rainfall Extremes and Implications for Highway Drainage Structures
October 2021
Knight Piésold, aliado de la minería sustentable