Estimate of Settlement of a Tailings Dam Founded on Collapsible Soils: Case Study

Estimate of Settlement of a Tailings Dam Founded on Collapsible Soils: Case Study

Author: Gavi Sotelo, Solange Paihua
Conference: Tailings 2017: 4th International Seminar
Date: July 12-14, 2017

Collapsible soils are common in arid regions near the southern coast of Peru and often have a loose, metastable and brittle structure. They are usually of an eolian or alluvial origin with very low moisture content, negative pore pressures, and interparticle contacts that are partially cemented by salts. Thus, making them prone to sudden and substantial settlements and loss of shear strength by quenching of the negative pore pressures and dissolution of the salts if the moisture content is increased. Rapid rearrangement of the particles into a denser matrix can then occur causing the collapse phenomena. If kept dry and in their natural state they may remain metastable and can have moderate to high strength and stiffness. But in engineered applications, since these soils have physical and mechanical properties strongly influenced by moisture content, if wetting is a possibility, engineered mitigations must be adopted to either remove them or adequately accommodate their potential collapse.

The purpose of this paper is to present an estimate of the settlements that are expected to be experienced by a particular tailings dam founded on collapsible soils in southern Peru (case study). The estimates were made using a simplified approach based on the collapse index and collapse potential findings from laboratory testing (ASTM D5333) and were then corroborated by 2-D finite element numerical modeling using GeoStudio software. The results indicated that settlements in the order of 1.6 m could be expected at the time of start-up of the facility, which is the most critical period, when the supernatant water pond will be located against the dam and will lead to significant seepage and therefore wetting of the foundation materials.

Engineered solutions to mitigate the potential for settlement were adopted and included either excavating and replacing the soils with dense compacted fill or installing a geomembrane to substantially reduce potential wetting of the foundation.


Download the full technical paper.



Recent Insights

November 2023
Earthquake-induced Deformation Analysis of a TSF Undergoing Tailings Reprocessing
November 2023
Case Study: Approach to Determining the Risk Mitigation Priority of a Historic TSF in North America
October 2023
The Role of Sensitivity Analysis in Selecting Dam Breach Parameters
September 2023
Transición energética para gerentes de mina
August 2023
Interview: Guillermo Barreda, Gerente General, Knight Piésold Perú
July 2023
Selection of Soil Shear Strength Parameters Based on Integrated In Situ Tests, Lab Tests and Numerical Calibration Approach
June 2023
Leveraging Knowledge and Experience of a Well-Formed Independent Tailings Review Board to Enhance Tailings Facility Safety
May 2023
Is the Implementation of Dry Stacking for Tailings Storage Increasing? A Southern African Perspective
February 2023
Canadian Consulting Engineer's Lifetime Achievement Awards: Jeremy Haile
February 2023
Geotechnical Characterization of Collapsible Salty Sands Subjected to Monotonic and Cyclic Loadings – A Case Study for Areas with High Seismicity
November 2022
Application of the 3D Limit Equilibrium Method in Tailings Dam Breach Analysis
November 2022
Evaluation of Tailings Behaviour for Dam Breach Assessments
November 2022
Tailings Improvement by Stress-Densification from Waste Rock Capping
November 2022
Transforming Tailings Management Systems toward Alignment with the GISTM: A Case History
October 2022
Managing Excessive Pit Wall Deformation of Weak Rock Mass
October 2022
State-of-the-art Method for Estimating Long-term Hydroclimatic Conditions for Tailing Dam Water Management and Dam Safety Planning
August 2022
Observed Subsidence Progression at New Afton Mine in Response to Lift 1 Mining
June 2022
Hydrometric Monitoring and Effluent Discharge Mixing in Challenging Natural Conditions
May 2022
Inundation Modelling of Non-Newtonian Tailings Dam Breach Outflows
May 2022
Video: Tailings Management Compliancy Picks Up Momentum