Estimating Shear Stress within a Clay Foundation Using the Burgers-Creep Model

Estimating Shear Stress within a Clay Foundation Using the Burgers-Creep Model

Authors: Mark Bancroft1, Salina Yong1
Conference: 6th International ITASCA Symposium on Applied Numerical Modeling in Geomechanics
Date: June 3–6, 2024

1 Knight Piésold Ltd., Vancouver, BC, Canada
 

INTRODUCTION

A currently operating tailings storage facility (TSF) was constructed on foundations consisting of, in de-scending stratigraphical order, a 3 m clay unit, a 5 to 10 m thick permeable gravel unit, a 1.5 m sand and silt unit, and a medium plastic clay unit (Lower Clay) that extends over 100 m in depth to bedrock. The TSF embankment is approximately 20 m tall and was constructed by raising annually. Slope inclinometers were installed at multiple locations along the embankment once construction neared the final crest elevation and during subsequent periodic site investigations. These inclinometers are currently showing constant-rate creep deformations within the Lower Clay.

Creep can occur in three stages. Primary creep occurs when the strain rate decreases with time, secondary creep occurs when the strain rate becomes constant, and tertiary creep occurs when the strain rate begins increasing exponentially resulting in failure known as creep rupture (Lacasse & Berre 2005). The potential for creep rupture can be evaluated by comparing shear stress within the foundations to the upper yield strength, which is defined as the shear strength associated with the minimum strain rate at which creep rupture occurs (Finn & Shead 1973). A FLAC model was constructed to estimate the shear stress distribution within the Lower Clay. The clay was modeled using the Burgers-creep viscoplastic constitutive model, and the FLAC model was calibrated against the slope inclinometer data. The modeled shear stress distribution will be compared to the upper yield strength of the material on completion of the laboratory testing underway to evaluate the potential for creep rupture. This abstract describes the construction of the FLAC model and calibration of the Burgers model viscous properties.

 

Download the full paper.

Download

Recent Insights

October 2025
2025 CCE Awards Showcase: Salton Sea Species Conservation Habitat Project
September 2025
Klamath River Renewal Project - Dam Breach Analysis Used for Designing the Final Breach of the Iron Gate Dam
September 2025
Klamath River Renewal Project - Optimization of the Iron Gate Dam Historic Diversion Tunnel Using CFD Analysis to Support Reservoir Drawdown
September 2025
Klamath River Renewal Project - Design of Dam Modification for Reservoir Drawdown, River Diversion and Dam Removal of the Copco No. 1 Dam
September 2025
Drawdown Modelling of Four Reservoirs on the Klamath River to Support Hydroelectric Facility Decommissioning
September 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
September 2025
Lessons Learned in the Interpretation of SCPT on a Tailings Facility Using the CSSM Framework
September 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
September 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
September 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
August 2025
The Evolution of Structural Domains from Scoping Study to Operations for the Meadowbank Mine – Amaruq Site
August 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
July 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
July 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
June 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
June 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
June 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
May 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
April 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
November 2024
Knight Piésold: Commitment to African Excellence