Geotechnical Characterization of Collapsible Soils Cemented by Salts - A Case Study

Geotechnical Characterization of Collapsible Soils Cemented by Salts - A Case Study

Author: G. Sotelo, S. Orellana, J. Macedo, H. Jaffal, G. Espinoza, Z. Xu, K. Stokoe, C. El Mohtar
Conference: 7th lnternational Conference on Earthquake Geotechnical Engineering
Date: June 17-20, 2019

ABSTRACT
Collapsible soils are typically found in arid regions and often have an aeolian or alluvial origin. In their natural state, they have a low moisture content and high initial or peak shear strength and stiffness due to their cemented structure (e.g. by the presence of salts). However, when these soils are subjected to wetting or saturation, the salts can dissolve resulting in a reduction of cementation and the peak strength and stiffness. This paper presents a summary of the geotechnical characterization performed on a deposit of collapsible soil at a proposed mine site near the southern coast of Peru, with particular emphasis on the dynamic characteristics. The site is located in a very high seismic area, which makes the dynamic characterization of these materials of primary importance. The geotechnical field investigation included drilling of boreholes, excavation of test pits, collection of samples, and execution of in-situ field tests. Undisturbed samples were carefully collected and oedometer, direct shear, consolidated drained triaxial, cyclic simple shear and resonant column tests were performed on them, while disturbed samples were also collected and tested for index properties and soluble salts content. The testing on undisturbed specimens was carried out at their natural moisture content state and after being subjected to wetting and the results revealed interesting insights in terms of the geotechnical properties and mechanical response of these materials as they lose the effects of salt cementation.

 

Download the full technical paper.

Download

Recent Insights

January 2024
Balancing Act: Water Usage Management Vital for a Sustainable Future
January 2024
A Difficult Balance Between Engineering, Environmental, Social and Economic Aspects
November 2023
Knight Piésold Commences with the ESIA for Haib Copper
November 2023
Insights from the Compilation and Critical Assessment of Breach and Runout Characteristics from Historical Tailings Dam Failures: Implications for Numerical Modelling
November 2023
Earthquake-induced Deformation Analysis of a TSF Undergoing Tailings Reprocessing
November 2023
Case Study: Approach to Determining the Risk Mitigation Priority of a Historic TSF in North America
October 2023
Data Management and Insights for Effective Tailings Storage Facility Management
October 2023
The Role of Sensitivity Analysis in Selecting Dam Breach Parameters
October 2023
Influence of Increased Confining Stress on Undrained Behavior of Tailings: A Case History at the Candelaria Mine
October 2023
The Re-use of Existing Bituminous Stabilised Materials for the Rehabilitation of National Route 7 - Case Study
September 2023
Transición energética para gerentes de mina
August 2023
Interview: Guillermo Barreda, Gerente General, Knight Piésold Perú
July 2023
Selection of Soil Shear Strength Parameters Based on Integrated In Situ Tests, Lab Tests and Numerical Calibration Approach
June 2023
Leveraging Knowledge and Experience of a Well-Formed Independent Tailings Review Board to Enhance Tailings Facility Safety
May 2023
Is the Implementation of Dry Stacking for Tailings Storage Increasing? A Southern African Perspective
February 2023
Canadian Consulting Engineer's Lifetime Achievement Awards: Jeremy Haile
February 2023
Geotechnical Characterization of Collapsible Salty Sands Subjected to Monotonic and Cyclic Loadings – A Case Study for Areas with High Seismicity
November 2022
Application of the 3D Limit Equilibrium Method in Tailings Dam Breach Analysis
November 2022
Evaluation of Tailings Behaviour for Dam Breach Assessments
November 2022
Tailings Improvement by Stress-Densification from Waste Rock Capping