Modelling, Design and Construction Monitoring of Neckartal Dam, Namibia

Modelling, Design and Construction Monitoring of Neckartal Dam, Namibia

Author: G.L. Coetzee, S.J. van Vuuren
Conference: AFRICA 2019
Date: April 2-4, 2019

Neckartal is the largest dam in Namibia, with a full supply volume of 853 x 106m3, exceeding the volume of what was previously the largest dam, Hardap, by a factor of three. Projects of this magnitude need innovative construction technology to be implemented successfully. In the case of Neckartal, a special challenge was its isolated location in the arid climate of southern Namibia, with irregular, high peak runoffs. During the design of the dam, two physical models were built. Results from the physical model testing were used to improve the safety of the spillway and reduce potential scour erosion downstream. Throughout the construction of the dam, innovative techniques were used, which are described in this paper.

In the early 20th century, German colonialists identified the site of the Neckartal dam, in the arid southern Karas region of Namibia. The Neckartal Dam and Phase 1 Bulk Water Supply Project is on the Fish river, about 41 km west of Keetmanshoop and some 22 km north of Seeheim. The dam has a catchment area of 45 365 km2 and a mean annual runoff (MAR) of 397 x 106m3/year, categorizing the storage volume of the dam as 2.14 of the MAR. At the time of Namibia's independence in 1990, planning of the dam was initiated, although a provisional design has been undertaken in the 1960s. The Namibian Ministry of Agriculture, Water and Forestry (MAWF), also referred to as the client, decided to implement the project with the aim of improving employment and aiding the long-term sustainable economic development of the Karas region. The project envisages elevating the agricultural development of the region with 1960 ha of irrigable farmland to be developed during Phase 1, which may be further expanded to 5000 ha.

The final design of the structure consisted of a 65 .5 m-high, curved, stepped, gravity, roller compacted concrete (RCC) wall with an uncontrolled ogee spillway, consisting of a lower spillway section and a higher spillway raised by 2.4 m. There is a multi-level intake structure with eight DN1600 and two DN3000 intakes. Other features of the dam include a spillway chute on the right bank to prevent flood erosion of the downstream foundation, two internal galleries, a control room and outlet works, together with the machine hall and sleeve valve house. With a recommended design discharge (RDD) of 9060 m3/s and a safety evaluation flood (SEF) of 21 480 m3/s, the spillway length is significant and necessitates the widest possible spill area to reduce the unit discharge rate to an acceptable criterion of less than 30 m3/s/m.

 

Download the full technical paper.

Download

Recent Insights

May 2023
Is the Implementation of Dry Stacking for Tailings Storage Increasing? A Southern African Perspective
February 2023
Canadian Consulting Engineer's Lifetime Achievement Awards: Jeremy Haile
February 2023
Geotechnical Characterization of Collapsible Salty Sands Subjected to Monotonic and Cyclic Loadings – A Case Study for Areas with High Seismicity
November 2022
Application of the 3D Limit Equilibrium Method in Tailings Dam Breach Analysis
November 2022
Evaluation of Tailings Behaviour for Dam Breach Assessments
November 2022
Tailings Improvement by Stress-Densification from Waste Rock Capping
November 2022
Transforming Tailings Management Systems toward Alignment with the GISTM: A Case History
October 2022
Managing Excessive Pit Wall Deformation of Weak Rock Mass
October 2022
State-of-the-art Method for Estimating Long-term Hydroclimatic Conditions for Tailing Dam Water Management and Dam Safety Planning
August 2022
Observed Subsidence Progression at New Afton Mine in Response to Lift 1 Mining
June 2022
Hydrometric Monitoring and Effluent Discharge Mixing in Challenging Natural Conditions
May 2022
Inundation Modelling of Non-Newtonian Tailings Dam Breach Outflows
May 2022
Video: Tailings Management Compliancy Picks Up Momentum
May 2022
A Catch up with...Richard Elmer
February 2022
Engineer of Record Services for Tailings Facilities
November 2021
Knight Piésold's Projects Commended at Prestigious Awards
November 2021
Advances in Ensuring Tailings Dam Safety
November 2021
Gearing Up for Growth in Zambia
October 2021
Climate Change Effects on Rainfall Extremes and Implications for Highway Drainage Structures
October 2021
Knight Piésold, aliado de la minería sustentable