Tailings Impoundment Closure Enhancement

Tailings Impoundment Closure Enhancement

Author: Antonio Sotil, Amy Adams, Craig Hall
Conference: 2nd International Congress on Planning for Closure of Mining Operations
Date: November 7-9, 2018

Many tailings impoundments provide long-term storage for saturated, semi-fluid fine grained materials. Closure of these tailings impoundments represents an ongoing priority and a potential challenge for owners and professionals due to the potentially fluid nature of the impounded tailings in the event of a hypothetical dam breach.

One solution is to cap and shape the impoundment surface using waste rock or other materials to promote surface runoff, minimize dusting, and densify the underlying tailings through consolidation. Poor surface trafficability can hinder capping operations, and the cap itself may not fully mitigate the potential for deeper saturated tailings to fluidize and flow in the event of a dam breach.

This paper provides an overview of a case study for the decommissioning of the Nye Tailings Impoundment at the Stillwater Mine. Additional details on the site investigations and tailings characterization work that has been completed to support decommission of the impoundment are included in Adams et al (2018) that was presented at the 2018 Canadian Dam Association (CDA) conference. The closure plan includes capping the loose saturated tailings with waste rock along with a cover of surface soils to reclaim the impoundment and create a stable landform. Initial staged construction of the closure cap will be accomplished using a geotextile to improve trafficability during placement of the initial rockfill capping layer.

A potential opportunity to enhance the closure of the impoundment can be achieved through the progressive development of a large waste rock storage area over the capped tailings surface. This closure enhancement would provide significant storage capacity for waste rock and reduce additional site disturbance during ongoing mine operations. As an added benefit, the waste rock load would promote consolidation, densification, and dewatering of the underlying tailings, further reducing the potential for the impounded tailings to fluidize and flow in the event of a hypothetical dam breach. This integrated waste management strategy for the Stillwater Mine will provide operational benefits for ongoing waste rock management while concurrently developing a stable reclaimed post closure landform to enhance the reclamation objectives for the mine site.


Download the full technical paper.


Recent Insights

November 2023
Earthquake-induced Deformation Analysis of a TSF Undergoing Tailings Reprocessing
November 2023
Case Study: Approach to Determining the Risk Mitigation Priority of a Historic TSF in North America
October 2023
The Role of Sensitivity Analysis in Selecting Dam Breach Parameters
September 2023
Transición energética para gerentes de mina
August 2023
Interview: Guillermo Barreda, Gerente General, Knight Piésold Perú
July 2023
Selection of Soil Shear Strength Parameters Based on Integrated In Situ Tests, Lab Tests and Numerical Calibration Approach
June 2023
Leveraging Knowledge and Experience of a Well-Formed Independent Tailings Review Board to Enhance Tailings Facility Safety
May 2023
Is the Implementation of Dry Stacking for Tailings Storage Increasing? A Southern African Perspective
February 2023
Canadian Consulting Engineer's Lifetime Achievement Awards: Jeremy Haile
February 2023
Geotechnical Characterization of Collapsible Salty Sands Subjected to Monotonic and Cyclic Loadings – A Case Study for Areas with High Seismicity
November 2022
Application of the 3D Limit Equilibrium Method in Tailings Dam Breach Analysis
November 2022
Evaluation of Tailings Behaviour for Dam Breach Assessments
November 2022
Tailings Improvement by Stress-Densification from Waste Rock Capping
November 2022
Transforming Tailings Management Systems toward Alignment with the GISTM: A Case History
October 2022
Managing Excessive Pit Wall Deformation of Weak Rock Mass
October 2022
State-of-the-art Method for Estimating Long-term Hydroclimatic Conditions for Tailing Dam Water Management and Dam Safety Planning
August 2022
Observed Subsidence Progression at New Afton Mine in Response to Lift 1 Mining
June 2022
Hydrometric Monitoring and Effluent Discharge Mixing in Challenging Natural Conditions
May 2022
Inundation Modelling of Non-Newtonian Tailings Dam Breach Outflows
May 2022
Video: Tailings Management Compliancy Picks Up Momentum