Tailings Impoundment Stabilization to Mitigate Mudrush Risk

Tailings Impoundment Stabilization to Mitigate Mudrush Risk

Author: Amy Adams, Daniel Friedman, Ken Brouwer, Scott Davidson
Conference: ICOLD 2017 Annual Meeting
Date: July 3-7, 2017

ABSTRACT
Historical tailings impoundments may contain saturated semi-fluid materials at depth, long after tailings deposition has ceased and after surface reclamation has been completed. These saturated materials can liquefy and flow if the impoundment is breached. A historical tailings pile can represent a risk to an underground mine development if there is potential for the mine development to generate a propagating zone of cracking and/or surface subsidence that ultimately interacts with the historical tailings impoundment. The risk of a sudden mudrush breach can be mitigated by reducing the potential for the tailings to flow. This paper presents a case study for the New Afton Mine located in British Columbia, Canada. A rheological model was developed to characterize the yield stress and flowability of a historic tailings deposit. In-situ and laboratory testing was completed to understand the variability between sandy tailings, deposited as above or below water beaches, and finer tailings ‘slimes’, deposited further from the deposition points. Simple index properties such as moisture content and clay-sized fraction were used to characterize the tailings rheology. A field-scale trial program was implemented to demonstrate that the tailings could be quickly and effectively densified and dewatered using wick drains, consolidation loading, and dewatering wells.

 

Download the full technical paper.

Download

 

Recent Insights

October 2025
2025 CCE Awards Showcase: Salton Sea Species Conservation Habitat Project
September 2025
Klamath River Renewal Project - Dam Breach Analysis Used for Designing the Final Breach of the Iron Gate Dam
September 2025
Klamath River Renewal Project - Optimization of the Iron Gate Dam Historic Diversion Tunnel Using CFD Analysis to Support Reservoir Drawdown
September 2025
Klamath River Renewal Project - Design of Dam Modification for Reservoir Drawdown, River Diversion and Dam Removal of the Copco No. 1 Dam
September 2025
Drawdown Modelling of Four Reservoirs on the Klamath River to Support Hydroelectric Facility Decommissioning
September 2025
Laying Groundwork for Future Mining: Infrastructure Support by Knight Piésold
September 2025
Lessons Learned in the Interpretation of SCPT on a Tailings Facility Using the CSSM Framework
September 2025
Challenges of Tailings Transport Pumping Systems in Negative Static Head Applications
September 2025
Hydraulic Evaluation of Tailings Transport Systems in Mountainous Terrain: Density Wave Analysis
September 2025
The Role of Rheology Tests in the Design and Operation of Long-Distance Slurry Transport Systems
August 2025
The Evolution of Structural Domains from Scoping Study to Operations for the Meadowbank Mine – Amaruq Site
August 2025
Safe Dams, Straight Talk: The Knight Piésold Difference
July 2025
Knight Piésold Zambia: Building a Future of Engineering Brilliance and Local Empowerment
July 2025
Water Engineering for Modern Mining: Bridging Mining with Sustainability
June 2025
The Essence of Material Compatibility in Advanced Barrier Systems of Existing TSFs
June 2025
Inverted Barriers in Tailings Storage Facilities: Lessons Learnt
June 2025
Prioritizing the Mitigation of Legacy Geomechanical Mine Hazards Using a Risk-Based Approach
May 2025
Knight Piésold: Sustainable Projects in DRC Through Baseline Studies
April 2025
Advancements in Geotechnical Investigations for the Characterisation of Upstream Tailings Dams in SA
November 2024
Knight Piésold: Commitment to African Excellence