Design of Coarse Tailings and Dry Ash Disposal Facilities

Design of Coarse Tailings and Dry Ash Disposal Facilities

Author: Andrew Copeland, Justin Teixeira
Conference: Paste 2019
Date: May 8-10, 2019

ABSTRACT
The diamond industry has been disposing of its coarse tailings using conveyor and stacker systems for many years. The process plant typically generates two tailings products, a grit fraction (sand) and a coarse fraction (gravel), which are often combined on one dump. In some cases, the dump is stable with a single steep slope angle. However, in other situations a composite slope forms with settlement and intermittent slumping behaviour, this impacts on both design and operation.

The thermal coal industry has also been disposing of dry ash for many years using either conveyor/stacking systems or haul trucks. Both systems work well, but the costs, deposition plans and stability aspects differ. Management of water and dust are also key factors.

There are a number of key design and operational aspects that are similar between these diamond tailings and ash facilities, and would apply equally to filtered and dry stacked tailings. This paper aims to examine these similarities and show how these learnings could be built into new filtered tailings designs and operations to make them more efficient and stable.

 

Download the full technical paper.

Download

Recent Insights

July 2023
Selection of Soil Shear Strength Parameters Based on Integrated In Situ Tests, Lab Tests and Numerical Calibration Approach
June 2023
Leveraging Knowledge and Experience of a Well-Formed Independent Tailings Review Board to Enhance Tailings Facility Safety
May 2023
Is the Implementation of Dry Stacking for Tailings Storage Increasing? A Southern African Perspective
February 2023
Canadian Consulting Engineer's Lifetime Achievement Awards: Jeremy Haile
February 2023
Geotechnical Characterization of Collapsible Salty Sands Subjected to Monotonic and Cyclic Loadings – A Case Study for Areas with High Seismicity
November 2022
Application of the 3D Limit Equilibrium Method in Tailings Dam Breach Analysis
November 2022
Evaluation of Tailings Behaviour for Dam Breach Assessments
November 2022
Tailings Improvement by Stress-Densification from Waste Rock Capping
November 2022
Transforming Tailings Management Systems toward Alignment with the GISTM: A Case History
October 2022
Managing Excessive Pit Wall Deformation of Weak Rock Mass
October 2022
State-of-the-art Method for Estimating Long-term Hydroclimatic Conditions for Tailing Dam Water Management and Dam Safety Planning
August 2022
Observed Subsidence Progression at New Afton Mine in Response to Lift 1 Mining
June 2022
Hydrometric Monitoring and Effluent Discharge Mixing in Challenging Natural Conditions
May 2022
Inundation Modelling of Non-Newtonian Tailings Dam Breach Outflows
May 2022
Video: Tailings Management Compliancy Picks Up Momentum
May 2022
A Catch up with...Richard Elmer
February 2022
Engineer of Record Services for Tailings Facilities
November 2021
Knight Piésold's Projects Commended at Prestigious Awards
November 2021
Advances in Ensuring Tailings Dam Safety
November 2021
Gearing Up for Growth in Zambia