Vertical Expansion of a 41-m High Geosynthetic Reinforced Soil Slope

Vertical Expansion of a 41-m High Geosynthetic Reinforced Soil Slope

Author: Fanny Herrera, Luis Chahua, Elio Murrugarra, David Reaño
Conference: Tailings and Mine Waste 2018
Date: September 30-October 2, 2018

ABSTRACT
The Pampa Verde waste dump expansion is highly driven by the following constraints: (1) relatively limited options for laterally extending the existing buttress; (2) the need to satisfy both static and seismic stability; (3) the need to properly select high-strength reinforcement products; (4) the importance of conducting material-specific tests to characterize the soil-geosynthetic interaction; and (5) the complex geometry of the overall system, particularly its global stability. The existing facility is stabilized by a geosynthetic-reinforced toe buttress that includes a compacted earth fill, with a slope of 2.1H:1V, overlying an mechanically stabilized earth wall (MSE or reinforced soil). The MSE structure involves upper and lower MSE wall sections with a horizontal step in between. The upper section is a geogrid-reinforced wall, while the lower section is a Terramesh system involving gabions reinforced with geogrids. The overall design approach involves the design of a geosynthetic-reinforced soil slope (RSS) that would use geogrids of high tensile capacity. The design guidelines for the proposed RSS are those outlined by the US Federal Highway Administration (FHWA-NHI-10-024). A key aspect of the proposed design is the proper evaluation of the soil vs. geosynthetic interface; a total of five geogrid products were considered for possible use in the construction of the geosynthetic-reinforced slope at the Pampa Verde project.

 

Download the full technical paper.

Download

Recent Insights

April 2024
Risk Mitigation through Design Optimization Utilizing Seasonal Effects under Arctic Conditions at the Amaruq Mine
April 2024
Synthetic Rock Mass Modeling of Progressive Unravelling and Overall Slope Stability Using the Discrete Element Method
April 2024
Operational Slope Stability Risk Management for Large Open Pits at the Mount Milligan Mine – A Case Study
April 2024
Risk and Informed Approach to TSF Design and Operation
February 2024
Empowerment and Resilience
January 2024
Balancing Act: Water Usage Management Vital for a Sustainable Future
January 2024
A Difficult Balance Between Engineering, Environmental, Social and Economic Aspects
November 2023
Knight Piésold Commences with the ESIA for Haib Copper
November 2023
Insights from the Compilation and Critical Assessment of Breach and Runout Characteristics from Historical Tailings Dam Failures: Implications for Numerical Modelling
November 2023
Earthquake-induced Deformation Analysis of a TSF Undergoing Tailings Reprocessing
November 2023
Case Study: Approach to Determining the Risk Mitigation Priority of a Historic TSF in North America
October 2023
Data Management and Insights for Effective Tailings Storage Facility Management
October 2023
The Role of Sensitivity Analysis in Selecting Dam Breach Parameters
October 2023
Influence of Increased Confining Stress on Undrained Behavior of Tailings: A Case History at the Candelaria Mine
October 2023
The Re-use of Existing Bituminous Stabilised Materials for the Rehabilitation of National Route 7 - Case Study
September 2023
Transición energética para gerentes de mina
August 2023
Interview: Guillermo Barreda, Gerente General, Knight Piésold Perú
July 2023
Selection of Soil Shear Strength Parameters Based on Integrated In Situ Tests, Lab Tests and Numerical Calibration Approach
June 2023
Leveraging Knowledge and Experience of a Well-Formed Independent Tailings Review Board to Enhance Tailings Facility Safety
May 2023
Is the Implementation of Dry Stacking for Tailings Storage Increasing? A Southern African Perspective